Helping students is what we do best!
Several Ways for Students to Receive Help

• BC Peer Tutoring

• NetTutor: after-hours online support
BC Peer Tutoring
Offering In-person & Online Assistance

In-Person
- Main Campus
- Delano
- Southwest

Online
- Tutors come from 3 sites above
- Access via Request Tutoring
BC Peer Tutoring
In-person and Online

- Peer tutors recommended by BC faculty
- Tutoring offered for Most BC courses
- Provides one 50-minute session per week (one subject per student per week); DSPS & EOPS students may receive help with an additional hour each week
- Drop-in tutoring available for Math/English
How can students find a tutor?

• In any Canvas course, select the link “BC Peer Tutoring.”
• Link goes to Tutoring Center webpage—select tab “Request Tutoring”
• Fill out form regarding tutoring needs, both in-person and online
• Tutoring staff will contact student with appointment day/time—can be recurring or one-time
• Early College students will need to register for tutoring course, ACDV B81NC (no credit) by first going through DualEnroll.com for approval process
• Once registered, student accesses online appts through BC Tutoring Center Zoom via Canvas link in ACDV B81NC

Students can also walk into Tutoring Center and complete above steps in person
And, did you know that? . . .

• Tutors are trained in our EDUC B7A: Tutor Training and Practicum Level 1 and EDUC B7B: Tutor Training and Practicum Level 2 courses. Tutors can earn CRLA certifications.

• The above 2 courses are certified through the College Reading & Learning Association (CRLA) as International Tutor Training Program Certification (ITTPC) programs.
What if a student needs help in the wee hours?

We have it covered!
Online Tutoring through NetTutor

- Tutors are live, have degrees, and are experienced
- Tutors available in most subjects with evening & weekend hours
- Tutors don’t give you answers but kindly guide you toward the answers
- You don’t need an appointment and can access it an unlimited number of times

<table>
<thead>
<tr>
<th>Section</th>
<th>Tools</th>
<th>Keyboard</th>
<th>Pencil</th>
<th>Picture</th>
<th>Color</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Help</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Hi, I need to find the positive x-coordinate where \(\frac{2}{3} x^3 - 16x^2 + 5 \) has a slope of 0.
- Sure, I'd be happy to help with that. Do you have any initial thoughts on how to go about this one?
- I graphed the function and got this:
- The graph becomes flat around x = 16, so I think the answer is 16, but I need to use derivatives to find the answer.
- Okay, that's a great start. The slope does equal zero where the graph of the function becomes flat. Are you able to find the derivative?
- I think it's \(2x^2 - 32x \), but I don't know where to go from there.
- Okay, so the derivative tells you how the value of y changes when you change x by a really small amount.
- If we are on the flat part of the graph, how does the value of y change when we change x by a really small amount?
- It doesn't change. So if the value of the derivative equals that change in y, then the derivative must equal what?
- Oh, zero! So just...
Parting Quote as Food for Thought:

Helping others is the secret sauce to a happy life.

- Todd Stocker